RADIANT HEAT TRANSFER OF A NONGRAY
GAS WITH GRAY SURFACES

S. P. Detkov UDC 536.248:535.211
In practical calculations of radiant heat transfer the chamber volume is regarded as a single
zone with a uniform effective temperature., The walls are gray. Exact and approximate

methods of calculation for such a model are given,

§1, Introduction

In a system of gray surfaces bounding a transparent gas, radiation undergoes multiple reflections be-
fore being absorbed by the sink; an accurate treatment of this situation is very difficult. Hottel [1] gave a
general approximate solution of the problem of radiant heat transfer. He suggested a selectively gray
model of the gas spectrum, The zone equations are similar to those obtained for a gray gas and this is
their advantage, The only exact solution is that given by Hottel and Egbert [2] for a gray enclosure con-
taining a gas. This solution involves effective beam lengths and functions £(x, T) and a (x, T), In [3] the
solution was simplified a little by regrouping of the terms, Below we obtain solutions in the same sense,
accurate for systems: 1) with concave gray and black surfaces; 2) with two nonconcave gray surfaces and
two concave black surfaces. An approximate solution based on curtailment of the series giving the exact
solution is proposed.

§2, General Solution for Any Number of Zones

A system of gray volume and surface zones is a suitable standard giving the initial equations, For an
arbitrary number of zones with isotropic reflection and scattering, according to [4],

Qab = Aqng'

Here Qg and Q, are the columns of absorbed and original fluxes; A is the diagonal matrix of absorption
coefficients; & is the transposed square matrix of "resolving" angular coefficients [4, 5], It can be deter-
mined from the inverse matrix of the zone equation coeificients

I+ DR = (I — R

Here I is the unit matrix; R is the diagonal matrix of the reflection or scattering coefficients; 5* is the
transposed square matrix of angular coefficients, In [4] a numerical example of determination of the matrix
& was given,

The column of resultant fluxes has the form
Qr:Qab_QOZ(I—A%QO' (1)
In the usual notation
Qri = 2 Ai(phion - Qci
k=1

or

Qi= 3 QN — Qi (=1,2 ..., ). (2)
k=1
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Here Ni; = ®kjA; is the dimensionless "resolving™ angular coefficient, being the probability that a photon
emitted by zone k will arrive in zone i and be absorbed by zone i,

We can apply equations (1) and (2) as approximations to a system with nongray zones if we use aver-
age angular coefficients which are independent of the number of reflections or scatterings. An attempt to
determine such coefficients was made in [6]. In our case a single volume zone without scattering can be
characterized (according to Hottel) by its emissivity, and the volume emission (absorption) can thus be re-
placed by an equivalent surface emission (absorption), The entire calculation is then based on known emis~
sivity nomograms. In this case equations (1) or (2) give exact solutions if the resolving angular coefficients
are calculated with all the multiple reflections taken into account, For the simplest systems the calculation
procedure is shown below, In any case, it follows from the energy balance that

YN == 1 (3)

=1
According to the reciprocity relation for T; = T

PPy =F Py or AFNy = A F Ny, (4
For the zone of the i-boundary of the volume with zonek, A; = e‘i’; F; = Fy.

§ 3, Angular Coefficients for Multiple Reflections

The angular coefficient for surfaces i and k, separated by a nongray medium, in the case of isotropic
radiation has the form

Py = FL E dF, g D (1) Lie* cos 6, cos 8,dF,.
: Fi Fk ‘

For a transparent medium D =1, = ¢. The use of the effective beam length (/) is equivalent to taking the
transmittance ¥ = D(,) ¢ outside the integral, Consequently, the dependence of ¢ on the number of reflec-
tions is manifested only through the function D(ls). As an example we consider a sequence of surfaces 1,
2, ...,n, The probability that a photon emitted by surface 1 lands on surface n by successive reflections
from surfaces 2,3, .,..,n-1, is

Wy, = q’lsz‘I’zaR;{ e g aRy g Ppan
== @]2@23 T (Pn—-l,nDlDz—-l s Dn—(n—l) ﬁlRi'
=2
Here, for instance, Dy, is the transmittance of the region between surfaces 2 and 3 for a beam with a spec-
trum at the start of this region. The beam is initially emitted by surface 1, Obviously,
D_-1Dz—; e Dy ey = D,,

where Dy, is the transmittance of the whole broken path for a beam with the initial spectrum, Hence,

n—1

Wi = @1%e - (9‘7{—1.nD_n rl R;.

i=2

The derived formula is valid for any sequence of surfaces. For instance, for t reflections of a surface onto
itself

W= Dtrbl(Pt;‘,EIAlRf‘-

Here D,y (denoted by Dy, in the general case) is the transmittance of the broken path, consisting of ¢ + 1)
straight portions. For a black beam D, = 1 — ay,, where ay, is the absorptivity of the same broken path; ay,
= g, when the temperatures of the beam and gas are equal,

§4, Exact Formulas for Enclosure of Concave Surfaces

— a Gray Surface i and a Black Surface k

Successive consideration of multiple reflections leads to the formulas:
Ny =04l —a,+ @R (1 —a) + 2 RE(1 —a) + .. ],



N =l —a; + @R (1 —a) + @2 RE(1 —a) + ... 1,
Nig= (PiiA;' {a,+ (PiiRiaz R Y {al’ —+ (p-liRiaz’ 4 )

The formulas for N;; and Nj can be curtailed

A,
= B L1 - ®A; (@ 4 R, -+ 92 Ria;+ ...),
1 —Ryp;;
Nop oo Btk o 0! o Ral - o2 R2a!
ik cpzk(a1+(Pu zag+(P;,; la‘3+ )
1 — Ry

The dashes attached to ap, here and henceforth denote their differences as regards broken effective beam
lengths. The broken beam path is easily determined from the series of angular coefficients ¢ after removal
of the parentheses. Then:

Nip = @y (1 — @) A 0 R (L — @R — (@ + @;:Ria; + .. )]
Ny = A [ — @R — (a) -+ Ry, - 92 Rzza;; 4
Nig = ®ud 4 0uRPis @ - @R+ ) - By (0] 4 9 Riay 4 ).
It is easy to see that equation (3) is fulfilled, It served as a control for the formulas. The values of Ngk

and Ngi can be determined from relationship (4), which in the given case has the form

Ngg = -gkNgk’ Alngf [ iNgi'

In the formulas for Ny, and N, we make the substitution a,, —&p. &g and &g are the volume emissivities
for surfaces i and 15, détermining the original fluxes from the volume to the surfaces; Egi = @4i€1 + gpikt:;,
Eglc :hcpkksf + @Ki&. The average volume emissivity for the whole enclosure is calculated from the rela-
tionship

(F; + Fy) eay = Fitg; + Figg,.
Finally, the value of N g can be determined from the equation

(F; 4 Fy) eaq(l — Ngg = FisgiNgi -+ stghNgk.

g

In the calculation of €, e s e and a , ay, al the same effective beam lengths are used,
ms “m> “m m’ “m> “m

A set of special relationships is obtained from the given general formulas. As an example,we write
the formula for the emissivity of a cavity obtained by truncation of the enclosure by a plane, The cavity is
filled with a nongray medium at the same temperature, The radiation emerges through an opening in k,

gt == Nl:i -1 thg’ where Gy, == s Qo = 0, @ == L
By algebraic transformation we obtain the result

g* = ————A‘: + Ris (€, + 9::R;ey + 95 Ri gt .)
1 — @R,
We recall that the effective broken path lengths lz* ,l’; , + .., from which 82* , e;‘ , ...,are calculated, are
traced from the series of angular coefficients ¢y ;@i @ki®ii®iks- ... The coefficient gy =1 is omitted
in the formula.

§5. Exact Formulas for Enclosure of Two Flat Gray (1 and 2)

and Two Concave Black (3 and 4) Surfaces

A consideration of multiple reflections gives
Ny = 41000 R [(1 — My — (@, + Ma, + Mag + . - N,
Ny = Ay [(1 — M) — (a; + Ma, + Mas+ ... )]
Ny = g [(1 — My™ — (a] + Maj + M?a + ...)] - @Ry [(1 — M)™ — (a} + Ma - MPaj+ .. .)].
Here M = ¢3¢ R4R,. The expression for Ny, is the same as for N;; with the substitution 3—4 and a;n——a;'n.
Finally,



ng = A @PuRy (@, + Ma, + . ..) + Aoy (@ + Mag + .. )
+ P13 (a; + Ma; A ) PR (a; -+ Ma‘; +oo) ey (alll + Ma;; ) - Ry, (agl -+ Ma: + ).

We note that the values of a,,, here are determined independently of those in the preceding section. The re-
maining Nj in this system of bodies are easily found from the reciprocal and closure relations, As a spe-
cial case we consider a plane-parallel layer: @3 = @14 =0, @1y = @y = 1:

Ny =A 4l —a, 4 RR,(1 —ay) + ...},

Ny == AR, 11 —a, + R R, (1 —a)+...1],

N]g: g RRy(@g—a) + ... Ryl — 0+ RiRy (@, —ag) + ... 1.

With Ry =R, =R and T, = T, = T, we obtain the formula published in [3],

g
ANyg = Ae = A (¢, + Rey + R, -+ .. ). (5)

All the derived formulas are suitable for both diffuse and specular reflections. The differences consist in
the methods of calculating €, and ay,. In the case of diffuse reflection ey = e(mley), ap, E“(mle1)' In the
case of specular reflection &, and a,, are determined for a body with a thickness increased by a factor m
in all directions. In this case lgy < 21, les < lgy + le;, etc. The direct use of the VTT nomograms for I,
2leq, etc., is valid for diffuse radiation. If there are nomograms or tables of emissivities of a layer, sphere,
cylinder, or other bodies, they can be used in a similar way for specular reflection,

§6. Approximate Formulas

The exact solutions given are infinite series. Their convergence for high reflection coefficients is
slow, We consider approximate formulas obtained by exact calculation of the first few terms of the series
and curtailment of the rest. We illustrate the method by the example of a typical and simple formula for
the reduced emissivity of a volume in the case of heat exchange with a gray enclosure. It follows from (5)
that

e = A(e, + Rey 4 Reg -+ ...).
This can be converted to
& =g + R(ey—e) + R (e, —eg,) + ... (6)
We can now rewrite the formula, using the transmittances
Dy, = (&; —&;_m)/ey, (j=>m), (7
where m and j are the number of passages of the beams through the volume due to multiple reflections,

Here &, determines the spectrum of the beam for which on a path consisting of (j — m) parts the transmit-
tance Dj,,, is defined,

im
Form =1
Dy = (e, —ej)/ey; Dy = (€5 —e5)eg ... .
Substitution in (6) gives
€ =¢, (1 + RD,, + R*D,, + RD, + ...).
Form =2
_ Dy = (25— &))/eg; Dy = (g, —&,)/e,; Iy
Substitution in (6) and transformations give
(14 R)e = Aty + Rey (I + RDgy + R*Djp +- ....).

Here and henceforth we use a typical transformation

& — 8 — (851 — &)
J‘JmEJ Jm:[_.mD

£, —E; 4 =&

m jm Em—-lD(i—l)(:m—I)'

For any m
(l + R —{-— e Rm_l);«' =& —l‘ Rez ’l" e Rm—zam—l '+" Rmklgm (1 + RDnH-],m ;'I_ Rsza-Z.m + e )



-pi™™®
jm m+, m’
exponential absorption law, In this case the "tail" of the series is reduced to

! + RDmH,m + R2Dn1+2,m + .. (1 - RDm+1 m)

The first approximation consists in using the equation D which is valid only in the case of an

The result is an underestimate, The second approximation consists in using the equation
Djm = (Dm+2 m/Dm-)-] m)j_m

The ratio in the parentheses has the sense of the transmittance of the second region after the m-th reglon
The resuit is an overestlmate to approximately the same extent, Hence, we take the geometric mean D

= yDD' = (m) . Finally,
(I PR+ ...R"™e vy -Rey - F R %,y R e (1 =RV Dy )7 (8)
where D yp m = (Em+z — &)/8p-
We will show that the derived formulas can be curtailed by the same method, The formulas contain the
typical series
4+ @Ry 3R = (L= @R ay - @R (@ —ay) + @RI (@ —a) + . .
The parentheses contain an expression similar to (6). Instead of (7) we use

D, — 4 "%m (1> m)

Jm
m

The rest of the procedure is repeated.

§ 7. Numerical Calculations

To assess the method of curtailment of the series we need to test the typical formula (8), Whenm =1

it assumes a very simple form

— g

g = T:__R%;_D:’ where Dy, = (g, — &,)/¢,. (9)
With increase in m the error of formula (8) decreases, and when m —» e the formula becomes exact, Table

1 gives: EN is the reduced emissivity of a plane-parallel layer for specular reflection; the figures were

TABLE 1, Comparison of Reduced Emissivities of Volume of Gas in Gray En-
closure with Reflection Coefficient R; €y, € are from Exact Formulas; g, is
from Approximate Formula (9); &4 is from Formula in [8]

Conditions R ey €a - Es
CO, layer, Thickness x, =.0,05 0.2 0,1032 0,106 0,1084
m-atm, t=1000 °C, Specular 0.4 0.1109 0,116 0.1220
reflection 0.6 0.1229 0.128 0,1394
0.8 0.1469 0,143 0,1627
H,0layer, Thickness x, = 0,05 0.2 0,1047 0,106 0.1043
m~atm, t= 1000 °C, 0.4 0.1201 0,123 0.,1174
Specular reflection 0.6 0,1450 0.146 © 01341
0.8 0.1948 0,178 0.1565

Conditions R g Ea &
CO, volume, x, = 0.001 m-atm, 0.2 0.0140 0,0140 0.0133
t =800 jC. Diffuse reflection 0,4 0,0170 0,0169 0,0150
_ 0.6 0.0217 0,0213 0.0171
0,8 0,0310 0,0286 0.0200
H,O volume, Xg = 0,01 m-atm, 0.2 0.0281 0,0284 0,0267
t= 800 °C, Diffuse reflection 0.4 0.0344 0.0362 0.0300
0.6 0.0454 0,04417 0,0343
0.8 0.0700 0,0628 0,0400




obtained and kindly provided by A.S, Nevskii; € is the reduced emissivity of a volume with effective thick-

ness x, for diffuse reflection; Ea is the approximate value obtained from formula (9).

With R = 0,8 we took

20 terms of the series, but the remainder was still substantial, according to the estimate. In these condi-
tions the simple formula (9) gave a very good result, In [7] we obtained the best approximation of the same
form as (9): € = &;(1 — CR) ~1, The choice of the value of C, however, was not so good as here, Of the other
approximate formulas we give those proposed by Splett in [8] after a review, mcludmg the review in [3]: e
=28@ ~ —R)~!, Table 1 shows that formula (9) is much better.
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Subscripts

NOTATION

is the beam path reduced according to partial pressure p;

is the emissivity of gas on region x;

is the absorptivity of gas for black beam with temperature T;

are the square matrices, explained in § 2;

is the absorption coefficient;

is the reflection coefficient (also scattering coefficient, in § 2);

are the absorbed, original, and resultant fluxes of zones;

are the diagonal matrices, in § 2;

are the columns;

is the dimensionless "resolving" angular coefficient, meaning given in § 2;
is the surface of zone;

is the generalized angular coefficient for surfaces F; and Fy;

is the generalized angular coefficient for diathermal medium;

explained in § 3;

are the transmittance, absorptivity, and emissivity for broken path consisting of m regions;
dashes indicate differences in broken paths;

is the effective beam length;

is the emisgivity;

is the emissivity of gray enclosure filled w1th nongray gas;

is the reduced emissivity of volume for heat exchange with enclosure;

is the transmittance of j — m regions for beam emitted by m regions in series.

g denotes the volume, the first subscript indicates the source,
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